Persistence and Stability for a Three-Species Ratio-Dependent Predator-Prey System

Atta Abu Hany, Mohammad Ismail and Aisha Agha*

ABSTRACT

In this paper we study some qualitative properties such as persistence and stability for a three-species ratio-dependent predator-prey system with time delay in a three-patch environment. It is shown that the system is permanent under some suitable conditions.

Keywords: Predator-Prey Model; Time Delay; Diffusion; Uniform Persistence.

1. INTRODUCTION

Although the predator-prey theory has seen much progress in the last five decades, many long standing mathematical and ecological problems remain open (Rui and LanSun, 2000).

Since the pioneering theoretical work by (Skellam, 1951), many papers have focused on the effect of spatial factors, which plays a crucial role in permanence and stability, of population (Leung, 1987; Rothe, 1976). In fact, the dispersal between patches often occurs in ecological environments, and more realistic model should include the dispersal process. Many authors have studied the permanence and stability of Lotka-Volterra diffusion models (El-Owaidy and Ismail, 2003; Freedman and Takeuchi, 1989; Lu and Takeuchi, 1992). In addition, it is generally recognized that some kind of time delays are inevitable in population interactions and tend to be destabilizing in the sense that longer delays may destroy the stability of positive equilibrium (see (Cushing, 1977; Freedman and Takeuchi, 1989) and the reference cited therein).

Time delay due to gestation is among them, because generally duration of \(\tau \) time units elapses when an individual prey is killed and the moment when the corresponding increase in the predator population is realized. The effect of this kind of delay on the asymptotic behavior of populations has been studied by a number of papers (see, for example (Wang and Ma, 1997).

In this paper, we incorporate time delay due to gestation into the ratio-dependent predator-prey diffusion system. For the three-species ratio-dependent predator-prey model with diffusion and Michaelis-Menten type functional response, this results in the following delayed system:

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) \left(a_i - a_{ix} x_i(t) - \frac{a_{ix} x_i(t)}{m x_i(t)} + x_i(t) \right) \\
&+ D_i (x_i(t) + x_i(t) - x_i(t)), \\
\dot{x}_2(t) &= x_2(t) \left(a_{ix} x_i(t) + D_i x_i(t) + x_i(t) - x_i(t) \right), \\
\dot{x}_3(t) &= x_3(t) \left(-a_i + \frac{a_{ix} x_i(t - \tau)}{m x_i(t - \tau)} + x_i(t - \tau) \right), \\
\dot{x}_4(t) &= x_4(t) \left(a_{ix} x_i(t) + D_i x_i(t) + x_i(t) - x_i(t) \right).
\end{align*}
\] (1.1)

where \(x_i(t) \) represents the prey population in the \(i^{th} \) patch, \(i = 1, 2, 4 \) and \(x_i(t) \) represent the predator population. \(\tau > 0 \) is a constant delay due to gestation. \(D_i \) is a positive constant and denotes the dispersal rate, \(i = 1, 2, 4 \). \(a_i, a_{ij} \) (\(i,j = 1,2,3,4 \)) and \(m \) are positive constants.

We adopt the following notations and concepts throughout the rest of this work.

\let x = (x_1, x_2, x_3, x_4) \in R^4 = \{ x \in R^4 : x_i \geq 0, i=1,2,3,4 \}

* Department of Mathematics, Faculty of Science, Al-Azhar University, Gaza (1,2); Department of Mathematics, Faculty of Science, Al-Aqsa University, Gaza, Palestine(3).

Received on 3/1/2006 and Accepted for Publication on 7/2/2007.

© 2007 DAR Publishers/University of Jordan. All Rights Reserved.
The notation $x > 0$ denotes $x \in \text{Int } R^+$. For ecological reasons, we consider system (1.1), only in Int R^*_+. Let $C^+ = C([-\tau, 0]) R^*_+$ denote Banach space of all nonnegative continuous functions with \[\|\phi\| = \sup_{s \in [-\tau, 0]} |\phi(s)|, \text{ for } \phi \in C^+. \] (1.2)

Then, if we choose the initial function space of system (1.1) to be C^+, it can be seen that, for any $\phi = (\phi_1, \phi_2, \phi_3, \phi_4) \in C^+ \text{ and } \phi(0) > 0$, there exists $\alpha > 0$ and a unique $x(t, \phi)$ of system (1.1) on $[-\tau, \alpha)$, which remains positive for all $t \in [0, \alpha)$, such solutions of system (1.1) are called positive solutions. Hence, in the rest of this work, we always assume that $\phi \in C^+, \phi(0) > 0$. (1.3)

Definition 1. System (1.1) is said to be uniformly persistent if there exists a compact region $D \subset \text{Int } R^*_+$ such that every solution $x(t) = (x_1(t), x_2(t), x_3(t), x_4(t))$ of system (1.1) with initial conditions (1.3), eventually enters and remains in the region D.

In the following, we say an equilibrium of the system is globally asymptotically stable if it attracts all positive solutions of the system.

The organization of this paper is as follows. In the next section, we present a uniform persistence results for system (1.1). In section 3, we derive the local stability. Section 4 provides sufficient conditions for the positive equilibrium of system (1.1) to be globally asymptotically stable.

2. UNIFORM PERSISTENCE

System (1.1) has a unique positive equilibrium, if and only if the following conditions are true:

(H1) $a_{ij} > a_i,$

(H2) $ma_{ij} > a_{ij}(a_{ij} - a_i)$.

In the following, we always assume that such a positive equilibrium exists and denote it by $E^*(x_1^*, x_2^*, x_3^*, x_4^*)$.

Lemma 2.1 Let $x(t) = (x_1(t), x_2(t), x_3(t), x_4(t))$ denote any positive solution of system (1.1) with the initial condition (1.3). If $a_j < a_{3j}$, then there exists a $T > 0$ such that $x_j(t) \leq M_j$, $(i = 1, 2, 3, 4)$ for $t \geq T$, (2.1) where

$$M_1 = M_2 = M_3 > M^*_1, M^*_2, M^*_3,$$

$$M^*_i = \max \left\{ \frac{a_i - a_{ij}}{a_{ij}}, \frac{a_i - a_{3ij}}{a_{3ij}} \right\}, \quad M^*_j = \frac{a_i - a_{ij}}{ma_i} e^{\omega t - \tau}. \quad (2.2)$$

Proof: We define $V(t) = \max \{x_1(t), x_2(t), x_3(t)\}$ Calculating the upper-right derivative of V along the positive solution of system (1.1), we have the following:

(P1) If $x_1(t) > x_2(t)$, $x_2(t) > x_3(t)$ or $x_1(t) = x_2(t) = x_3(t)$ and $\dot{x}_1(t) \geq \dot{x}_2(t) = \dot{x}_3(t),$ $\dot{x}_2(t) \geq \dot{x}_3(t),$ $\dot{x}_3(t) \geq \dot{x}_4(t),$ $D' V(t) = \dot{x}_1(t) \left[a_1 - a_1 x_1(t) - \frac{a_1 x_1(t)}{mx(t) + x_1(t)} \right]$

$$+ D_1(x_1(t) + x_3(t) - x_1(t)) \leq x_1(t) \left[a_1 - a_{11} x_1(t) \right].$$

(P2) If $x_1(t) < x_2(t)$, $x_2(t) < x_3(t)$ or $x_1(t) = x_2(t) = x_3(t)$ and $\dot{x}_1(t) \leq \dot{x}_2(t) = \dot{x}_3(t) = \dot{x}_4(t),$ $D' V(t) = \dot{x}_1(t) \left[a_1 - a_1 x_1(t) \right] + D_1(x_1(t) + x_3(t) - x_1(t)) \leq x_1(t) \left[a_1 - a_{11} x_1(t) \right].$

(P3) If $x_1(t) < x_2(t), x_2(t) < x_3(t)$ or $x_1(t) = x_2(t) = x_3(t)$ and $\dot{x}_1(t) \leq \dot{x}_2(t) = \dot{x}_3(t) = \dot{x}_4(t),$ $D' V(t) = \dot{x}_1(t) \left[a_1 - a_1 x_1(t) \right] + D_1(x_1(t) + x_3(t) - x_1(t)) \leq x_1(t) \left[a_1 - a_{11} x_1(t) \right].$

From (P1)-(P3), we have

$$D' V(t) \leq x_1(t) \left[a_1 - a_1 x_1(t) \right], \quad i = 1 \text{ or } 2 \text{ or } 4. \quad (2.3)$$

From (2.3), we can obtain the following:

(i) If $\max \{x_1(0), x_2(0), x_3(0)\} \leq M_j$, then $\max \{x_1(t), x_2(t), x_3(t)\} \leq M_j, \quad t \geq 0.$

(ii) If $\max \{x_1(0), x_2(0), x_3(0)\} > M_j$, and $-\alpha = \max_{i,j} \{M_j(a_i - a_{ij}), (\alpha > 0)\}$, we consider the following four possibilities:

(a) $V(0) = x_1(0) > M_1, x_2(0) > M_2, x_3(0) > M_3,$

(b) $V(0) = x_2(0) > M_2, x_1(0) > M_1, x_3(0) > M_3,$

(c) $V(0) = x_3(0) > M_3, x_1(0) > M_1, x_2(0) > M_2,$

(d) $V(0) = x_4(0) > x_2(0) = x_3(0) > M_2.$

If (a) holds, then there exists $E > 0$, such that if $t \in [0, E]$, then $V(t) = x_i(t) > M_j$, and we have $D' V(x_i(t), x_2(t), x_3(t)) = \dot{x}_i(t) < -\alpha < 0.$

If (b) holds, then there exists $E > 0$, such that if $t \in [0, E]$ then $V(t) = x_i(t) > M_j$, and we have $D' V(x_i(t), x_2(t), x_3(t)) = \dot{x}_i(t) < -\alpha < 0.$

If (c) holds, then there exists $E > 0$, such that if $t \in [0, E]$, then $V(t) = x_i(t) > M_j$, and we have $D' V(x_i(t), x_2(t), x_3(t)) = \dot{x}_i(t) < -\alpha < 0.$
If (d) holds, then there exists $\varepsilon > 0$, such that if $t \in [0, \varepsilon)$, then

$$V(t) = x_{1}(t) > M_{i}, \text{ or } V(t) = x_{2}(t) > M_{i},$$

or $V(t) = x_{3}(t) > M_{i}$.

Similar to (a), (b) and (c), we have

$$D^{n}V(x(t), x'(t), x''(t)) = \dot{x}(t), \quad t = 1, 2, 3, 4,$$

or

$$\liminf_{t \to \infty} x_{i}(t) \geq m_{i} = m_{i}^{*}.$$

Therefore, for large t, we have $x_{i}(t) > m_{i}/2$.

Moreover, from the fourth equation of system (1.1) we obtain

$$\dot{x}_{1}(t) \geq x_{1}(t) \left[a_{1} - D_{1} - a_{ii} x_{i}(t) \right],$$

which implies that

$$\liminf_{t \to \infty} x_{1}(t) \geq m_{1} \geq 0.$$
Theorem 3.1. Suppose that system (1.1) satisfies (H1), (H2) and the following:

\begin{align*}
(H6) & \quad -(2A_{21} + A_{22})\geq 0, \\
(H7) & \quad 2A_{31} + A_{32} + A_{33} + A_{34} < 0, \\
(H8) & \quad 2A_{41} + A_{42} + A_{43} + A_{44} < 0, \\
(H9) & \quad \tau(B_{31} - B_{32}) < 1.
\end{align*}

Then the positive equilibrium \(E^* \) of (1.1) is locally asymptotically stable.

Proof: The third equation of (3.1) can be rewritten as

\begin{equation}
\frac{d}{dt}W_{3}(t) = B_{31}N_{3}(t) + B_{32}N_{2}(t) + B_{33}N_{1}(t) + B_{34}N_{0}(t) + \int_{0}^{t} N_{3}(s)ds
\end{equation}

Define

\begin{equation}
W_{3}(t) = [N_{3}(t) + B_{31}N_{3}(t) + B_{32}N_{2}(t) + B_{33}N_{1}(t) + B_{34}N_{0}(t) + \int_{0}^{t} N_{3}(s)ds].
\end{equation}

Then, along the solution of (3.1), we have

\begin{equation}
\frac{d}{dt}W_{3}(t) = 2B_{31}N_{3}(t) + B_{33}N_{3}(t) + 2B_{32}N_{2}(t) + B_{34}N_{1}(t) + \int_{0}^{t} N_{3}(s)ds
\end{equation}

Using the Cauchy-Schwarz inequality and the inequality

\begin{equation}
a^2 + b^2 \geq 2ab,
\end{equation}

we get

\begin{equation}
\frac{d}{dt}W_{3}(t) \leq 2B_{31}N_{3}(t)N_{3}(t) + 2B_{32}N_{2}(t) + \int_{0}^{t} N_{3}(s)ds
\end{equation}

Now let \(W_{3}(t) \) be defined by

\begin{equation}
W_{3}(t) = W_{3}(N(t)) = W_{3}(N(t)) + W_{3}(N(t))
\end{equation}

\begin{equation}
W_{3}(N(t)) = (B_{31} - B_{32})\int_{0}^{t} N_{3}(s)ds + (B_{32} - B_{33})\int_{0}^{t} N_{2}(s)ds.
\end{equation}

Then we derive from (3.4)-(3.6) that

\begin{equation}
\frac{d}{dt}W_{3}(N(t)) \leq 2B_{31}N_{3}(t)N_{3}(t) + 2B_{32}N_{2}(t) + \int_{0}^{t} N_{3}(s)ds
\end{equation}

Let

\begin{equation}
W(t) = W(N(t)) = -B_{31}[N_{3}(t) + N_{2}(t) + N_{1}(t)] + W_{3}(t).
\end{equation}

Then, along the solution of (3.1), we have

\begin{equation}
\frac{d}{dt}W(t) \leq -2B_{31}[N_{3}(t) + N_{2}(t) + N_{1}(t)] + 2B_{32}N_{2}(t) + \int_{0}^{t} N_{3}(s)ds.
\end{equation}

Using the inequality \(a^2 + b^2 \geq 2ab \), we have

\begin{equation}
\frac{d}{dt}W(t) \leq -2B_{31}N_{3}(t) + 2B_{32}N_{2}(t) + \int_{0}^{t} N_{3}(s)ds.
\end{equation}

Then, in which

\begin{equation}
\alpha_{1} = \frac{B_{31}(2A_{21} + A_{22}) + A_{32} + A_{33} + A_{34}}{A_{31}},
\end{equation}

\begin{equation}
\alpha_{2} = \frac{B_{32}(2A_{21} + A_{22} + A_{33} + A_{34}) - 2\tau(B_{31} - B_{32})B_{31}}{A_{31}},
\end{equation}

\begin{equation}
\alpha_{3} = \frac{B_{33}(2A_{21} + A_{22} + A_{32} + A_{34} + A_{31}) + 2\tau(B_{31} - B_{32})B_{31}}{A_{31}},
\end{equation}

\begin{equation}
\alpha_{4} = \frac{B_{34}(2A_{21} + A_{22} + A_{32} + A_{34} + A_{31} + A_{34})}{A_{34} + A_{31}}.
\end{equation}

Clearly, assumptions (H6)-(H9) imply that

\(\alpha_{1} > 0, \alpha_{2} > 0, \alpha_{3} > 0, \alpha_{4} > 0 \).
Denote \(\alpha = \min \{ \alpha_i, \alpha_2, \alpha_3, \alpha_4 \} \). Then (3.8) leads to
\[
W(t) + \alpha \int_{\tau}^{\infty} \left[N_i^1(t) + N_i^2(t) + N_i^3(t) + N_i^4(t) \right] ds \leq W(t),
\]
for \(t \geq T \),
(3.9)
and which implies
\[
N_i^1(t) + N_i^2(t) + N_i^3(t) + N_i^4(t) \in \mathcal{L}(T, \infty).
\]

It is easy to see from (3.1) and the boundedness of \(N(t) \) that \(\sum_{i=1}^{4} N_i^2(t) \) is uniformly continuous and then, using Barabalan's Lemma (Gopalsamy, 1992), we can conclude that \(\lim_{t \to \infty} \sum_{i=1}^{4} N_i^2(t) = 0 \). Therefore, the zero solution of (3.1) is asymptotically stable and this completes the proof.

Remark: We remark here that, from the proof of Theorem (3.1), it is easy to know that, under the Assumptions (H1) and (H2), if
\[
2A_{i1} + A_{i2} + A_{i3} + A_{i4} < 0,
\]
\[
2A_{i2} + A_{i3} + A_{i4} + A_{i5} < 0,
\]
\[
2A_{i3} + A_{i4} + A_{i5} + A_{i6} < 0,
\]
then the positive equilibrium of the "instantaneous" (when \(\tau = 0 \)) model (1.1) is locally asymptotically stable. If
\[
2A_{i1} + A_{i2} + A_{i3} + A_{i4} < 0,
\]
\[
2A_{i2} + A_{i3} + A_{i4} + A_{i5} < 0,
\]
\[
2A_{i3} + A_{i4} + A_{i5} + A_{i6} < 0,
\]
then the local stability of \(E^* \) of (1.1) is preserved for small \(\tau \) satisfying (H6) and (H9).

4. GLOBAL ASYMPTOTIC STABILITY

In this section, we proceed to the study of global attractively of positive equilibrium of system (1.1). To achieve this, we need the following theorem. But let us first consider an autonomous system of delay differential equation defined as
\[
\dot{x}(t) = F(x(t)),
\]
(4.1)
such that \(F(0) = 0 \) and \(F: \mathbb{C}([-\tau, 0], \mathbb{R}^n) \to \mathbb{R}^n, \tau > 0 \), is Lipschitzian, where \(\mathbb{C}([-\tau, 0], \mathbb{R}^n) \) is the set of continuous functions defined on \([-\tau, 0], \mathbb{R}^n\), with the norm
\[
\| \phi \| = \max_{-\tau \leq \theta \leq 0} | \phi(\theta) |,
\]
and where \(| \cdot | \) is any norm in \(\mathbb{R}^n \).

Theorem A (Kuang, 1993) Let \(w_i(\bullet) \), \(w_1(\bullet) \) and \(w_2(\bullet) \) be nonnegative continuous scalar functions such that
\[
w_i(0) = 0, i = 1, 2, 4; w_2(r) > 0, w_4(r) > 0 \text{ for } r > 0, \lim_{r \to \infty} w_i(r) = +\infty \text{ and } V: \mathbb{R} \to \mathbb{R}
\]
is a continuously differentiable scalar functional for a special set \(S \) of solutions of (1.1), and the following are satisfied
\[
1) V(\phi) \geq w_i(\phi(0)),
\]
\[
2) \dot{V}(\phi) \leq -w_i(\phi(0)), i = 2, 4.
\]

Then \(x = 0 \) is asymptotically stable with respect to the set \(S \). That is, solutions that stay in \(S \) converge to \(x = 0 \).

Our strategy in the proof of global asymptotic stability of the positive equilibrium of (1.1) is to construct a suitable Lyapunov functional. Let \(P(u) \) be defined by
\[
p(u) = \frac{u}{m + u},
\]
then system (1.1) can be rewritten as
\[
\begin{align*}
\dot{x}_i &= x_i \left[-a_{i1}(x_i - x_i^*) - a_{i2}(x_i - x_i^*) + \frac{D_{i1}x_i}{x_i}x_i x_i (x_i - x_i^*) \\
&- \frac{D_{i2}x_i}{x_i}x_i x_i (x_i - x_i^*) + \frac{D_{i3}x_i}{x_i}x_i x_i (x_i - x_i^*) \\
&+ \frac{D_{i4}x_i}{x_i}x_i x_i (x_i - x_i^*) \right] \\
\dot{x}_i &= a_{i2}(x_i - x_i^*) - \frac{D_{i2}x_i}{x_i}x_i x_i (x_i - x_i^*) \\
&+ \frac{D_{i3}x_i}{x_i}x_i x_i (x_i - x_i^*) \\
&+ \frac{D_{i4}x_i}{x_i}x_i x_i (x_i - x_i^*) \\
\end{align*}
\]
(4.2)
Define ,
\[
u = \frac{x_i}{x_i}, \quad u^* = \frac{x_i^*}{x_i},
\]
then system (4.2) becomes
\[
\dot{x}_i = x_i \left\{ -a_i(x_i - x_i^*) + a_i \left[\frac{P(u)}{u} - \frac{P(u^*)}{u} \right] \right\} - \frac{D_i}{x_i} x_i x_i (x_i - x_i^*) \\
+ D_i \frac{x_i x_i (x_i - x_i^*)}{x_i} + D_i \frac{D_i}{x_i} x_i x_i (x_i - x_i^*) \right\} \\
\dot{u} = u \left\{ -a_i(x_i - x_i^*) + a_i \left[\frac{P(u^*)}{u} - \frac{P(u)}{u} \right] \right\} + \frac{D_i}{x_i} x_i x_i (x_i - x_i^*) + D_i \frac{x_i x_i (x_i - x_i^*)}{x_i} \right\} \\
\dot{x}_i = x_i \left\{ -a_i(x_i - x_i^*) + \frac{D_i}{x_i} x_i x_i (x_i - x_i^*) \right\} + D_i \frac{x_i x_i (x_i - x_i^*)}{x_i} \\
\dot{v} = \left\{ v_i + \left[\frac{a_i}{m} \right] F(v_i) \right\} - \frac{D_i}{x_i} x_i x_i x_i v_i \\
+ \frac{D_i}{x_i} x_i x_i x_i v_i \\
\dot{v}_i = \left\{ v_i + \left[\frac{a_i}{m} \right] F(v_i) \right\} - \frac{D_i}{x_i} x_i x_i x_i v_i \\
+ \frac{D_i}{x_i} x_i x_i x_i v_i \\
\dot{v}_i = \left\{ v_i + \left[\frac{a_i}{m} \right] F(v_i) \right\} - \frac{D_i}{x_i} x_i x_i x_i v_i \\
+ \frac{D_i}{x_i} x_i x_i x_i v_i \\
\dot{v}_i = \left\{ v_i + \left[\frac{a_i}{m} \right] F(v_i) \right\} - \frac{D_i}{x_i} x_i x_i x_i v_i \\
+ \frac{D_i}{x_i} x_i x_i x_i v_i.
\]

Now we formulate the result on the global stability of the equilibrium E^* of (1.1) as follows.

Theorem 4.1. Suppose that system (1.1) satisfies (H1)-(H5) and the following (H10): $A_i > 0, i = 1, 2, 3, 4$, where

\[
A_1 = \frac{m a_i}{a_i} - \frac{D_i x_i M_i}{x_i M_i} - \frac{1}{m} \left[\frac{a_i}{m} + 2D_i x_i M_i \right],
\]

\[
A_2 = \frac{a_i}{a_i} - \frac{D_i x_i M_i}{x_i M_i} - \frac{1}{m} \left[\frac{a_i}{m} + 2D_i x_i M_i + \frac{M_i}{x_i M_i} + \frac{x_i}{D_i x_i M_i} \right],
\]

\[
A_3 = \frac{a_i}{m} - \frac{D_i x_i M_i}{x_i M_i} - \frac{1}{m} \left[\frac{a_i}{m} + 2D_i x_i M_i + \frac{M_i}{x_i M_i} + \frac{x_i}{D_i x_i M_i} \right],
\]

then the positive equilibrium $E^* (x_i^*, x_2^*, x_3^*, x_4^*)$ of (1.1) is globally asymptotically stable.

Proof: To prove that the global asymptotic stability of the positive equilibrium of E^* of (1.1) is equivalent to that of the trivial solution of (4.6), let

\[
V(t) = \int_{x_i^*}^{x_i} \left(v_i - x_i \ln \frac{x_i^*}{x_i} \right) + \int_{x_i^*}^{x_i} \frac{P(u) - P(u^*)}{u} \, du,
\]

where,

\[
c_i = \frac{m a_i}{a_i}, c_i = \frac{m D_i x_i}{x_i}, c_i = \frac{m D_i x_i}{x_i}, c_i = \frac{m D_i x_i}{x_i},
\]

Along the solution of (4.6), we have

\[
\frac{d}{dt} V(t) = \int_{x_i^*}^{x_i} \left(c_i v_i (v_i - x_i) + c_i F(v_i) v_i \right) + c_i v_i (v_i - x_i) + c_i F(v_i) v_i
\]

\[
= -c_i a_i v_i^2 (v_i - x_i) \left[\frac{x_i}{x_i^*} - \frac{v_i}{x_i^*} \right] - c_i a_i v_i^2 (v_i - x_i)
\]

\[
+ D_i c_i x_i x_i x_i + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
= -c_i a_i v_i^2 (v_i - x_i) - c_i a_i v_i^2 (v_i - x_i)
\]

\[
- D_i c_i x_i x_i x_i + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
= -c_i a_i v_i^2 (v_i - x_i) - c_i a_i v_i^2 (v_i - x_i)
\]

\[
- D_i c_i x_i x_i x_i + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]

\[
\frac{D_i c_i x_i x_i x_i}{x_i x_i x_i} + D_i c_i x_i x_i x_i - c_i a_i x_i x_i x_i + D_i c_i x_i x_i x_i
\]
\[\begin{align*}
&= -c_i a_i v_i(t) - c_{a_i} v_i(t) - c_{a_v} v_i(t) \\
&\quad - c_i D_i \left(\sqrt{\frac{x_i}{x_i} v_i} - \sqrt{\frac{x_i}{x_i} v_i} \right)^2 \\
&\quad + \frac{2 D_i c_i x_i v_i}{x_i} (2v_i - x_i v_i) \\
&\quad + \left(\frac{a_i}{m} - a_{i_i} \right) F_i(v_i(t)) + \frac{D_i}{x_i} x_i v_i F(v_i(t)) \\
&\quad - \frac{D_i x_i^2}{x_i} v_i F(v_i(t)) \\
&\quad + \frac{D_i}{x_i} x_i v_i F(v_i(t)) + a_i F(v_i(t)) \right) F(i(v_i(t))) \\
&\quad + \frac{a_i}{m} F(v_i(t)) - a_{i_i} F(v_i(t)) + \frac{D_i}{x_i} x_i v_i(t) - \frac{D_i x_i^2}{x_i} v_i(t) \\
&\quad + \frac{D_i}{x_i} x_i v_i(t) \right) ds.
\end{align*}\]

Using the inequality \(a^2 + b^2 \geq 2ab\), and the Cauchy-Schwarz inequality, then from (4.6) and (4.5) we derive, for \(t > T^* \), that

\[\begin{align*}
\frac{d}{dt} V(t) &= -c_i a_i v_i(t) - c_{a_i} v_i(t) - c_{a_v} v_i(t) \\
&\quad - c_i D_i \left(\sqrt{\frac{x_i}{x_i} v_i} - \sqrt{\frac{x_i}{x_i} v_i} \right)^2 \\
&\quad + \frac{2 D_i c_i x_i v_i}{x_i} (2v_i - x_i v_i) \\
&\quad + \left(\frac{a_i}{m} - a_{i_i} \right) F_i(v_i(t)) + \frac{D_i}{x_i} x_i v_i F(v_i(t)) - \frac{D_i x_i^2}{x_i} v_i F(v_i(t)) \\
&\quad + \frac{D_i}{x_i} x_i v_i F(v_i(t)) + a_i F(v_i(t)) \right) F(i(v_i(t))) \\
&\quad + \frac{a_i}{m} F(v_i(t)) - a_{i_i} F(v_i(t)) + \frac{D_i}{x_i} x_i v_i(t) - \frac{D_i x_i^2}{x_i} v_i(t) \\
&\quad + \frac{D_i}{x_i} x_i v_i(t) \right) ds.
\end{align*}\]

Now define Lyapunov functional \(V(t) \) as

\[\begin{align*}
V(t) &= V(t) + \frac{1}{2} a_{i_i} \int_{t-T^*}^t \left[a_i v_i(s) + \frac{a_i}{m} F(v_i(s)) \right] ds \\
&\quad + \frac{D_i m_i x_i}{2} \left(v_i(s) + \frac{D_i m_i x_i}{2} v_i(s) \right) \\
&\quad + \frac{1}{2} a_{i_i} F^2(v_i(s))^2 ds.
\end{align*}\]

Then we have from (4.7), (4.9) and (4.10) that for \(t \geq T^* \),

\[\begin{align*}
\frac{d}{dt} V(t) &\leq -A_i v_i(t) - A_{a_i} v_i(t) - A_{a_v} F(v_i(t)) - A_{i_i} v_i(t) \\
&\quad - c_i D_i \left(\sqrt{\frac{x_i}{x_i} v_i} - \sqrt{\frac{x_i}{x_i} v_i} \right)^2 \\
&\quad + \frac{2 D_i c_i x_i v_i}{x_i} (2v_i - x_i v_i) \\
&\quad + \left(\frac{a_i}{m} - a_{i_i} \right) F_i(v_i(t)) + \frac{D_i}{x_i} x_i v_i F(v_i(t)) - \frac{D_i x_i^2}{x_i} v_i F(v_i(t)) \\
&\quad + \frac{D_i}{x_i} x_i v_i F(v_i(t)) + a_i F(v_i(t)) \right) F(i(v_i(t))) \\
&\quad + \frac{a_i}{m} F(v_i(t)) - a_{i_i} F(v_i(t)) + \frac{D_i}{x_i} x_i v_i(t) - \frac{D_i x_i^2}{x_i} v_i(t) \\
&\quad + \frac{D_i}{x_i} x_i v_i(t) \right) ds.
\end{align*}\]
Define \(w_1(t) = V(t) \)

where \(w_1(t) \) is a continuous positive definite function of \(s, s \geq 0 \), such that

\[
\begin{align*}
& w_1(0) = 0 \quad \text{and} \quad w_1(s) \to +\infty \quad \text{as} \quad s \to +\infty.
\end{align*}
\]

Then, hypothesis (1) of Theorem A \([5]\) holds for any \((x_1, x_2, u, x_4) \in R_4^+ \).

Furthermore, we see from (4.11) that \(V'(t) \) is negative definite for any \((x_1, x_2, u, x_4) \in R_4^+ \) provided that \(A_i > 0 \) \((i = 1, 2, 3, 4)\).

Therefore,

\[
V'(t) \leq -w_2(t)
\]

(4.12)

where \(w_2(t) \) is positive definite of \(s, s \geq 0 \) such that \(\lim_{s \to +\infty} w_2(s) = +\infty \). And

\[
V'(t) \leq -w_4(t)
\]

where \(w_4(t) \) is positive definite of \(s, s \geq 0 \) such that \(\lim_{s \to +\infty} w_4(s) = +\infty \). Hence, hypothesis (2) of Theorem A (Kuang, 1993) holds, which implies the global asymptotic stability of the equilibrium \(E^* \) of (1.1) with respect to positive solutions. The proof is complete.

REFERENCES

تتأخر زمنية في أصناف الثلاثة والمتغيرات الاستقرار

أبو عطاء محمد وآخرون،

دوريات الأغواط،

الدالة التفاضلية المعادلات للحلول الأخصاء بهضب إضافًا إلى البحث.

خاصة بيان على دراسة وتركزة تأخر زمنية في أصناف الثلاثة والمتغيرات الاستقرار محددة شروط تحت الانتظار صفة للنظام أن ونثب.

الكلمات الدالة: تأخر زمني، النظام الموحدة المتغيرات الاستقرار، تأخر زمني، إضافًا إلى البحث.

(العلوم الرياضية، قسم، غزّة الأزهر، جامعة)

* (العلوم الرياضية، قسم، الأقصى، جامعة الأزهر، جامعات)*

- 164 -