مراجعة وقياس التغير على مساحة البحر الميت باستخدام تطبيقات الاستشعار عن بعد

ونظم المعلومات الجغرافية

هيقاء أحمد المحمد، حسام هشام البليبيسي، خاص يوسف أبو سمر

ملخص

تهدف هذه الدراسة إلى تطبيق طريقة جديدة يمكن من خلالها مراقبة التغير على مساحة البحر الميت باستخدام تطبيقات Landsat-7 ETM+ و Landsat-8، والتي تتيح مراقبة الطرق الجديدة يمكن من خلالها حساب مساحة مساحات المذابة، وأصل الطريق ورقة وأيضاً لحساب التغير على مساحة البحر الميت باستخدام الطيف الموجي الأحمر والطيف البليبيسي تحت البحيرة المتوسطة، وهي طريقة مهيئة التدريب وتمكن تطبيقه وحساب مساحة مساحات المذابة بشكل عام، ومن أهم نقاط الدراسة: نقص مساحة البحر الميت من عام 1987 و حتى عام 2009 حوالي 40 كم²، انخفاض مستوي مياه البحر الميت من 405 متر تحت مستوى سطح البحر عام 1987 و حتى مستوى سطح البحر عام 2009 وكان مقدار الانخفاض حوالي 18 مترًا.

المقدمة

من تطبيقات الاستشعار عن بعد ونظم المعلومات الجغرافية (GIS)، يمكن مراقبة الظواهر الجغرافية على سطح الأرض، ومن هذه الظواهر تحديد مناطق البحيرات المذابة، ومراقبة التغيرات في البحيرات في الأسماك والدراسات البيئية، وتحديدها وحساب سهولة ويسوع مراقبة الظواهر البيئية التي تهددها، وقد حددت هذه الدراسة الملاحظات الجغرافية في مراقبة الظواهر المذابة، وتحديد السواحل والمناطق القريبة، وتبديلها كما إن تحديد الشواطئ والبحيرات المذابة، وتشويش مياه البحر الميت، وتحديد التغيرات في البحيرات المذابة، التي حدثت معرفة مدى تأثيرها على البيئة البحرية، وتحديدها المحيطة، كما هو الحال في المنطقة المحيطة بالبحر الميت، إذ طورت أثر إيجابية لائحة تنويم تصادم منسوب، للغاية أصل مساحة البحيرة، على تطور البيئة المحيطة به، وتحدد الجسيمات المائية، وتحدد البحيرة، حيث وصل مستوى المياه نحو 424 مترًا تحت مستوى سطح البحر عام 2010، وعانقت مساحة تحت حدود

* قسم الجغرافيا، جامعة الملك عبدالعزيز، المملكة العربية السعودية.
* قسم الجغرافيا جامعة الأردن، عمّان. تاريخ استلام البحث 12/6/2013، وتاريخ نشره 28/5/2012.
وذلك بهدف تحديد أفضل الطرق التي يمكن استخدامها وتقييمها على البيانات البحرية ذات الظروف الشابهة.

الدراسات السابقة

جاءت دراسات عديدة لحساب مساحة المياه وفي كل طريقة كان النتائج المستقلة لحساب مساحة البحر الميت تقريبية عدد من كل طرق محاكاة ضعف بحيث يكون مستوى الدقة في نتائجها منخفضاً، وهذا أثر في هذه الدراسات التطبيقية:

- شركة البوتاس العربية: تجري الشركة حسابات لقياس مساحة البحر الميت سنوياً بناءً على التغير في مستوى مياهه حيث تكون قياسات تقديرية بناءً على المعدل في انخفاض مساحة البحر كما في الجدول (1).

الجدول (1) مساحة البحر الميت ومعدل ونسبة البحر الميت (بيانات شركة البوتاس العربية 2010)

<table>
<thead>
<tr>
<th>السنة</th>
<th>مساحة البحر (كم٢)</th>
<th>المعدل / سنويا</th>
<th>مستوى سطح البحر (م)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>680</td>
<td>-1.7</td>
<td>-405.1</td>
</tr>
<tr>
<td>1996</td>
<td>674</td>
<td>-0.8</td>
<td>-410.1</td>
</tr>
<tr>
<td>2003</td>
<td>657</td>
<td>-0.5</td>
<td>-416.3</td>
</tr>
<tr>
<td>2009</td>
<td>650</td>
<td>-1.3</td>
<td>-423.2</td>
</tr>
</tbody>
</table>

والتي قدمت (Qudah and Harahsheh)، دراسة حساب مساحة البحر الميت من خلال تقنيات نظم المعلومات الجغرافية واستخلاص مساحات البحر الميت، والتي قدمت (Hajahjeh and Khirfan)، نتائج لحساب مساحة البحر الميت المصموحة لسنوات الدراسة باستخدام طريقة الترميز اليدوي باستخدام الطيف تحت الأحمر الغرير من مركبات اللائناس.

- دراسة (Al-Hanbeli et al., 2006) وأظهرت نتائج الدراسة توصل الباحثين لحساب مساحة البحر الميت من خلال الاستشعار عن بعد بطرق التزنفني الموجه، والتي استخدمت (Abu Ghazaleh et al., 2010)، فيها نظم المعلومات الجغرافية ونموذج (SRTM).

- دراسة (2010) منطقة الدراسة

البحر الميت بيئة جيولوجية وجيومورفولوجية ومناخية وجيغرافية غردة، تعرضت إلى التغيرات التدريجية حيث انخفض منسوب البحر الميت وتقلص مساحته، تتأثر العوامل البشرية المتصلة في تفكيك أكثر من 95% من المياه الرافدة للبحر

البحر الميت ورئة نباتية تشمل مختلف الأنواع المائية، مما يعكس الجبرية وتنوعها. وتشمل أنواع النبات البحري الواسعة، مثل الأزهار البحرية، البذور البحرية، والكائنات البحرية الأخرى، التي تعيش في بيئات البحر الميت العالية.

405.1
410.1
416.3
423.2

- 377 -
موقع البحر الميت فلكياً / التقرير الأولي للبيئة 2008 م

- الشكل (1) مرئية Landsat ETM+

كما يوضح من الشكل (3) والذي يمثل نموذج الارتفاعات الرقلي حيث تظهر من خلاله قيم الارتفاعات في المنطقة بوضوح. ونتيجة لتراجع مساحة البحر الميت أصبح يتكون من المناطق التالية:

- الحوض الشمالي: هو البحر الميت حالياً، منبسط القاع، مستطيل الشكل باتجاه الشمال والجنوب وهو أكثر عرضًا وعمقًا ويتضمن من الجزء الجنوبي.
- شبه جزيرة اللسان: يفصل الحوض الشمالي عن الجزء الجنوبي، ويزداد طول اللسان مع زيادة جفاف البحر الميت، ويبلغ عرض شبه الجزيرة 7 كم وطولها 20 كم (عابد، 1985).

- الحوض الجنوبي: يمتد من جنوب اللسان وحتى غور الصافي وهو أقل اتساعًا وعمقًا من الحوض الشمالي الذي لا يزيد عمقه عن 10 م، وقد يفاجأ هذا الحوض بشكل كامل.

ويشكل البحر الميت جزءًا من حفرة الانهيار الأسيب - أفريقية، التي تمتد لمسافة 6000 كم من تركيا شماليًا وحتى نهر الرامزير في أفريقيا جنوبًا (Bender, 1974) وقد تشكل في فترة الميوسين أي قبل أكثر من 21 مليون سنة، واتسمت رفعته واتصلت أجزاءه وغطت مياهه منطقة واسعة من شمال بحيرة طبرياء حتى جنوب حدوده الحالي نحو 30 كم وقد سميت ببحيرة اللسان. ثم تساقطت مساحته بسبب تصور المناخ التدريجي نحو المناخ الجاف منذ 50 ألف سنة (في فترة البليستوسين الأعلى)، وترامز ذلك مع بداية نهر الأردن ولم يبق من تلك البحيرة القديمة إلا بحيرة طبرياء في الشمال والبحر الميت في الجنوب. تتراوح مناسب سطح المناطق المحيدة بالبحر الميت بين 360 م تحت مستوى سطح البحر أي قرب البحر الميت على الجانبين، وحوالي 2100 م فوق مستوى سطح البحر في الأجزاء الجنوبية الشرقية، ويتراوح الارتفاع النسبي بين أعلى نقطة وأقل نقطة حوالي 1740 مترًا.
الشكل (2) نموذج الارتفاعات الرقمية

الشكل (3) الأراضي الناتجة عن تراجع مساحة البحر الميت مرئية *Landsat ETM*+ 2009
المصادر المائية للبحر الميت وعلاقتها بمنسوبه

تحرص مصادر المياه المغذية للبحر الميت على عمليات استئناف، إذ تسببت كميات كبيرة من مياهها، مما سرعًا عمليات انخفاض منسوبه وبالتالي تفاقم صدمة وظهور البيئة المحيطة به.

تأتي معظم المياه إلى البحر الميت من مناطق الكثافة المطرية النسبية لمجري نهر الأردن، حيث تبلغ مساحة منطقة الرفد المائي حوالي 40,650 كيلومتر مربع (Salameh, 2000, and EL-Nasser)

المصادر الرئيسية لمياه البحر الميت هي: المياه السطحية والتحتية، في نهر الأردن، والأودية والنواحي الجبلية والمياه الجوفية. يغمر نهر الأردن من أهم مصادر المياه السطحية المغذية للبحر الميت إضافة إلى الأودية الجبلية منها (الموجب، الوالة، الحسا، الكرك) وعلى الجانب الغربي أُودية

![الشكل (4) مناسبس سطح البحر الميت الفترة الممتدة من 1976-2010](image)

مناخ البحر الميت: يجمع مناخ البحر الميت بين الصيف الحار الجاف، والشتاء الدافئ قليل المطر، حيث يتركز أكثر من 60% من الهطول المطر في أشهر كانون الأول وثاناني، ونحو 30% يتركز في شتاء عامي 26 ملم سنويًا، وتحتوي شرائح الحرارة العظمى بين 29.2 و42 درجة مئوية سنويًا، حيث ينخفض الفجأة حوالي سبعة أشهر، ويتراوح

مجموع التكفر بين 1500مليمتر سنويًا و1600مليمتر سنوية، ومعدل الرطوبة السنوية بين 41.3% و63.6% (تقرير دائرة الإرصاد الجوية الأردنية من عام 1982 إلى عام 2009).

تبلغ نسبة ملونة مياهه عند السطح حوالي 30% وعند الأعمق تصل إلى 34%, أي عشرة أضعاف المستويات المائية الأخرى، وتتركب مياهه من مجموعة من المعادن والأملاح التي تستخدم للصناعة والalesceك من الأمراض. (AbuGhazielh, et., al. 2009)
البحر الميت عني بالموارد المعدنية والأملاح، من البولنات والبروبان والمغنيسيوم والأملاح وغيرها من المعادن، وقد تم استغلالها على نطاق واسع من خلال شركات إستثمارية، مما أسهم في خفض منسوب البحر الميت وفقاً للمناخ. وتشكل صناعة إستخراج المعادن وصياغة مستحضرات التجميل جزءاً من النتائج الإيجابية المحلية في كل من الأردن وإسرائيل.

وقد أدى استثمار الصناعات المائية للبحر الميت إلى حدوث تغيرات بيئية أدت في المنطقة بشكل عام وفي البحر الميت بشكل خاص، وهم هذه التغيرات البيئية:

- تناقص مساحة البحر الميت: تراجعت مساحة البحر الميت أكثر من الثلث كما كانت عليه في القرن الماضي، وفي تزايد مستمر ويدعو أعرضاً من الناس إلى التعرض، ولترود البحر الميت بالمياه، تم إفتتاح مشروع قارورة البحرين لمياه البحر الميت والبيئة المحيطة، إذ تبلغ مساحة البحرين المحيطة بمناطق البحر الميت، والتي تبلغ منها حماية طبيعية طين البحر من التلوث وإثراء فطع السياحة وإزاحة عملية صناعة المعادن، إضافة إلى توليد طاقة كهروماجية.

- هبوط مستوى سطح المياه الجوفية: لقد هبط مستوى سطح المياه الجوفية بمحاذاة الشواطئ نتيجة انخفاض منسوب المياه مما أدى إلى تقليل المياه العذبة من المياه الجوفية، وتحتاج البحر الميت إلى المساحات المطلوبة للسماح بالسماح بالمياه الجوفية، وبالتالي تأثرت المياه المحيطة المطلوبة التي تتكون من المواد الكيميائية التي تحرك فيها، وكذلك سكك النباتات مما أدى إلى تهدئة النظام البيئي. حيث أن الاستغلالات الحيوانية كانت تشتول المنطقة وبالتالي هجرها، حتى أن البيئات التي تحتل المثلجة المحيطة أصبخت مع زيادة المثلجة غير قادرة على تحملها وبالتالي أصبحت في خطر.

- ظاهرة الجرف البالوعة (الإسفاحية) : لهذهSinkholes

(El-Bayoumi, et al., 2005)
في عام 2003، قام العلماء بتحديد الإحداثيات البلدية للمريئات القريبة من الشواطئ. هذه الإحداثيات تم تحديدها باستخدام نظام الإحداثيات الحديث Universal Transverse Mercator (UTM Zone 36N) بينما تم استخدام برمجيات القاعدة بيانات الجغرافية لتحليل البيانات. تم استخدام القاعدة بيانات الجغرافية لتحليل البيانات وپرسجيا نظام المعلومات المستخدم في الدراسة إلى Global Mapper GIS 9.3 (ادفابة إلى برنامج ENVI 4.5, Geomatica, PCI, Mapper, Photoshop CS).

المهندسة

استخدمت تطبيقات الاستشعار عن بعد وأدوات نظام المعلومات الجغرافية في تقديم إدارة الموارد المائية، وإدارة المناطق البحرية من خلال مراقبة وتسيير المياه المفتوحة، وقياس مساحات المساحات المائية وتحديد أبعادها، ودراسة التغيرات التي تحدث في الشواطئ والجزر، واستخلاص مساحة المياه بعدة مؤشرات من بيانات المريئات القريبة والتقريب عن باقي الأصناف الأخرى. (Xu, 2006). الرسم (6) يوضح المبادئ المبتعدة في قياس وحساب التغير على مساحة البحر المتغير.

في هذه الدراسة تم استخدام أربع مريئات فضائية للفئات بفترة تربيعية 30 م، لسنوات 1987، 1996، 2003 و 2009، وتم تنفيذ عملية التصحيح الإحداثي للمريئات القريبة من الشواطئ. إنتاجت هذه العملية مساحات مائية ومساحات مائي...
مثير

1

MNDWI = (Green – MIR) / (Green + MIR) (Xu, 2006)

2

 manual digitizing

On Screen

3

MNDWI = (ETM B2 – ETM B5) / (ETM B2 + ETM B5)

4

Manual Digitizing

On Screen

5

MNDWI = (NIR – MIR) / (NIR + MIR) (Gao, 1996)

6

Landsat ETM

7

41

2014

8

Unsupervised Classification

9

k-means Algorithm (k-means Algorithm)

10

Normalized Difference Water Index (NDWI)

- 383 -
البحث الميداني للبحر الميت من هذه المشاريع سن وادي العرب العام
على وادي العرب وسد الكرازة في حوض الملاحة عام 1997
(وزارة المياه والأرياف، 2010)، وارداد التنافص بين
عامي 1996 و2003 كمحتلة للتنافص خلال فترة الدراسة
بين عامي 1987 و2009 والتي بلغت حوالي 33كم² نتيجة
للأسباب البشرية التي لعبت الدور الرئيسي في تنافص مساحته،
وتقلص مساحته.

الشكل (8) مسلفات بالتركيب لوني (5.4.1)

الشكل (9) قيم المساحات المحسوبة باستخدام تقنية نظم المعلومات الجغرافية (GIS)

ما يميز هذه الطريقة بناء قاعدة بيانات جغرافية يمكن
الاستفادة منها في عمليات التحليل المكاني لمعظم التغييرات.
من خلالها تم التعرف على أكثر سواحل البحر الميت تغيراً
تأثرًا ولكن قد تتأثر مساحته من سلبيات هذه الطريقة هو الاعتماد
على قاعدة بيانات مرتبطة بقطرة تمريزية حوالي 30 مترًا وهي
متوسطة نسباً، مما يصعب تميز بعض الخلايا بعد التكبير عند
الحد من، واحتمال حدوث الخطايا البشرية من خلال عملية
الترقيم وفقدان بعض البيانات عند الروس، مما يجعلنا نبحث
عن طرق أخرى لحساب المساحة باستخدام برمجيات
الاستعاير عن بعد وبعده من الشكل ذاته أن أكثر سواحل
البحر الميت تغيراً وتآثرًا والتي استخلصت بهذه الطريقة من
الملاحظ أن الجزء الجنوبي أكثرها تنافصاً وتأثرًا وخصوصاً
المنطقة الشرقية من كل الجوانب، كما يلاحظ مدار التغير في المساحات في الجانب الغربي من ساحل البحر. أطراف منطقة البحز، كما في منطقة عين الجدي ومسعده.

GIS (10) المناطق الأكثر تغيرا وتأثيرا لمساحاتها باستخدام تقنية نظم المعلومات الجغرافية (GIS).

(map)

- ثاني: تقييم مؤشرات حساب مساحة البحر الميت
- باستخدام تطبيقات الاستشعار عن بعد (RS):

1- نتائج حساب مساحة البحر الميت باستخدام طريقة التصنيف غير الموجه:

![Graph of changes in the Red Sea area from 1987 to 2009](graph.png)
2- حساب مساحة البحر الميت باستخدام طريقة مؤشر الاختلاف المائي المعبوس (NDWI);

NDWI = (NIR - MIR) / (NIR + MIR) (Gao, 1996)

Landsat ETM

NDWI = (ETM B4 - ETM B5) / (ETM B4 + ETM B5)

في هذا المؤشر استخدم طيف الربع الأشعة تحت الحمراء القريبة، والتي تتميز بقدرتها على استخلاص أكبر قدر من المياه، وإعطائها قيمة موجبة للطيف المانتس وهو الطيف الأحمر المتوسط والذي يعطي المناطق التي تحتوي على مياه قيمة سلبية. وقد سبق تطبيق هذه المعادلة عملية استخلاص للمياه من خلال الطيف الربع والعطب الخامس كل على حدة، والشكل (12) يوضح استخلاص أكبر نسبة انعكاس للأشعة المكسوة.

الشكل (12) الخرائط المستخلصة لمساحات البحر الميت بطريقة التصنيف غير الموجه
يصعب حساب المساحة بشكل دقيق، أما الشكل (14) يوضح المساحات والخريطة المستخلصة للبحر الميت بهذه الطريقة.

الشكل (13) أكبر نسبة انعكاس للمياه على الطيف الرابع والخامس +

الشكل (14) قيمة المساحات المستخلصة باستخدام مؤشر الاختلاف المائي (NDWI)

الشكل (15) الخرائط المستخلصة باستخدام (NDWI)
MNDWI = (ETM B2 − ETM B5) / (ETM B2 + ETM B5)

من خلال المعادلة السابقة استخلصت المياه باستخدام الطيف الأزرق والطيف تحت الأحمر المتوسط لاستخلاص
مساحة المياه بدون اختلالها بالأنماط الأخرى، وبالتالي
حساب مساحتها بدقة.

MNDWI = (Green − MIR) / (Green + MIR)
(Xu, 2006)

الشكل (16) قيم المساحات المحسوبة باستخدام (MNDWI)

الشكل (17) الخرائط المستخلصة باستخدام طريقة (MNDWI)

الشكلان (16 و17) يوضحان قيم المساحات المحسوبة
والخريطة المستخلصة بواسطة هذا المؤشر، والتي يصبح فيها
 مدى الدقة في تحديد منطقة الساحل من خلال التفسير البصري,
وبالنسبة مساحة ساحل البحر الميت بدقة، ما يميز هذه
الطريقة إمكانية استخلاص المياه دون اختلالها بالأنماط
الأخرى، مما يكمنا من حساب المساحات بدقة أعلى، إذا
اعتبى الدراسة على هذا المؤشر لحساب مساحة البحر الميت
وما يمكن استخدامها في حساب

MNDWI = (Green − MIR) / (Green + MIR)
(Xu, 2006)

الشكل (16) قيم المساحات المحسوبة باستخدام (MNDWI)

الشكل (17) الخرائط المستخلصة باستخدام طريقة (MNDWI)

الشكلان (16 و17) يوضحان قيم المساحات المحسوبة
والخريطة المستخلصة بواسطة هذا المؤشر، والتي يصبح فيها
 مدى الدقة في تحديد منطقة الساحل من خلال التفسير البصري,
وبالنسبة مساحة ساحل البحر الميت بدقة، ما يميز هذه
الطريقة إمكانية استخلاص المياه دون اختلالها بالأنماط
الأخرى، مما يكمنا من حساب المساحات بدقة أعلى، إذا
اعتبى الدراسة على هذا المؤشر لحساب مساحة البحر الميت
وما يمكن استخدامها في حساب
الخريطة المستخلصة باستخدام المؤشرين (MNDWI و NDWI).

الشكل (18) يوضح فرق استخلاص مساحة البحر الميت باستخدام (MNDWI و NDWI)

الشكل (19) مقارنة نتائج الطرق الأربع المتتعة في حساب التغيرات في مساحة البحر الميت

لاحظنا مدى الدقة أرتبط بقدرة المحلل على رسم المنطقة بدقة عالية بحيث تحول دون فقدان أي من البيانات، وبالمقابل تحتاج إلى جهد ووقت حتى يتمكن المحلل من تأكيد دقة

وبمقارنة نتائج هذه الطرق نلاحظ مدى تقارب القيم المحسوبة لمساحة البحر الميت، ولكن في كل طريقة كانت مشكلة تداخل المياه مع نمط آخر، ففي طريقة الترقيم اليدوي.
لحساب التغير في مساحة البحر الميت،

توصلت الدراسة إلى ما يأتي:

تناولت الدراسة أيضًا عددًا من الطرق لحساب مساحة البحر الميت وآلياتها، وهي: سطوع الرياح، وطريقية التسنيف غير الموجه، وطريقية التسنيف غير الموجه، وطريقية مؤشر التغير (NDWI)، ومؤشر التغير المائي (MNDWI)。

وكل تلك الطرق تختلف فيها عن غيرها وبالتالي توثر في دقة نتائجها بحيث يصبح لكل طريقة ميزاتها وعيوبها على حد سواء. وقد وجد أن أفضل طرق الاستشعار عن بعد وطريقية سهولة وسرعة وأكثر دقة هي (MNDWI) وفقًا لنتائج الدراسة المستخدمة. حيث بلغت مساحة البحر الميت المحسمة عام 1987 حوالي 670 كم²، بينما بلغ عام 1996 658.75 كم²، وبلغ عام 2003 645.61 كم²، وبلغ عام 2009 630.99 كم².

وبناءً على ما سبق، تناقصت مساحة البحر الميت من عام 1987 وحتى عام 2009 حوالي 40 كم²، وتنوع التناقص كبير من سنو لآخر، وبالتالي زيادة انخفاض مستوى مياه البحر من 405 أمتار تحت مستوى سطح البحر عام 1987 إلى 242 أمتار تحت مستوى سطح البحر عام 2009، وبلغت مساحة البحر الميت البين عامي 1987 و2009 حوالي 40 كم².

النتائج

أظهرت التطور السريع في تدفق الرياح، تغير مساحة البحر الميت من عام 1987 وحتى عام 2009، وتحولت مساحة البحر الميت من أرضية لموطأ مائي إلى بحر مائي.

المصادر والمراجع

دارة الأرصاد الجوية، 2010، بيانات نوعية نشرات غير موجهة، الأردن.

شركة الرياح العربية، 2010، بيانات نشرة، الأردن.

Monitoring and Measuring the Changes of the Dead Sea Area Using Remote Sensing and GIS Applications

Haifa A. Al-Mohammad, Husam H. Al-Bilbisi, Hasan Y. Abu Sammour*

ABSTRACT

The aim of this study was to apply and evaluate four different methods in order to monitor and measure the changes of the Dead Sea area using GIS and remote sensing technique as well as multi-spectral images acquired in 1987, 1996, 2003, and 2009 by Landsat ETM+ sensor. The four methods are (Manual Digitizing, Unsupervised Classification, NDWI, and MNDWI); the results show that all these method can be used to extract the water body area. The results revealed that the best method which can be used, to measure the changes in water bodies, is The Modified Normalized Differences Water Index (MNDWI) with Green and MIR bands, where the achieved accuracy is better than the other methods. The results show that the Dead Sea area decreased about 40 km² between 1987 and 2009.

Keywords: Dead Sea Area, Landsat ETM+, Manual Digitizing (GIS), Unsupervised Classification, NDWI, MNDWI.

* Department of Geografic, King Abdelaziz University, Saudi Arabia; and The University of Jordan, Amman. Received on 28/5/2012 and Accepted for Publication on 12/6/2013.